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AI for wireless is here

Qualcomm 5G AI Suite

next-generation 5G performance enhancements
Qualcomm prototypes AI-enabled Air Interface

More showcases in MWCs

Snapdragon is a product of Qualcomm Technologies, Inc. and/or its subsidiaries.
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Machine Learning vs Wireless

Wireless
Machine 

learning

Tractable mathematical models

e.g., Gaussian, Rayleigh 

Information theory 

as mathematical framework

signal processing 

statistics 

optimization

Interpretable 

solutions

Good generalization

under different 

deployment condition

Simple model adaptation (e.g. different 

antenna, pilot patterns, SNR, Doppler and 

delay spread)

Accurate prediction:

design with real 

world priors, fast and 

flexible models

Accurate modeling:

learning generative 

process

sensing and perception

Inverse models:

learned optimizers
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Machine learning for wireless communication: challenges

Out-of-domain generalization

The models trained for a 

specific task should generalize 

well or adapt to new unseen 

scenarios

Ex. Unseen dopplers, channel 

condition 

Adaptive ML models

ML models should adapt to 

different scenarios 

Ex: different antenna 

configurations, channel 

condition

Supervised learning

Supervised learning is costly 

and at times infeasible

Ex: fingerprinting localization 

in dynamic environments 

Model 1
Model 2

Other issues: interpretability, causality, efficient learning, theoretical guarantees 
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Neural Augmentation

Boosting domain expertise with data-driven knowledge 

Convolutions in computer vision Transformers in NLP

Benefits:
Modeling flexibility, 
computational efficiency

Machine Learning Domain Knowledge

Challenges:
out-of-domain 
generalization, 
interpretability

Data versus inductive bias
Inductive bias helps generalization. 

Benefits:
out-of-domain 
generalization, 
interpretability 

Challenges:
complex modeling, 
processing  complexity

Graphical modelsSimulators

Generative versus inverse modeling
Generative models for data generation process
Inverse modeling to infer model parameters 
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A small detour: equivariance

• Convolutional kernels are designed based on translation equivariance - Convolutional neural 
networks are built based on translation invariance of the classification task

Knowing symmetries of the task, for example w.r.t. a particular compact group, we can design 
equivariant convolutional kernels 

Integrating inductive bias from data symmetry to the model

Taco S. Cohen, Max Welling, Group Equivariant Convolutional Networks, ICML 2016

Taco S. Cohen, Max Welling, Steerable CNNs, ICLR 2017

Taco S. Cohen, Mario Geiger, Maurice Weiler, A General Theory of Equivariant CNNs on Homogeneous Spaces, NeurIPS 2019

Equivariance property: A function 𝑓: 𝑉𝑖𝑛 → 𝑉𝑜𝑢𝑡 is equivariant  w.r.t to group 𝐺, if
𝑓 𝜌𝑔

𝑖𝑛. 𝒙 = 𝜌𝑔
𝑜𝑢𝑡𝑓 𝒙 𝜌𝑔

𝑖𝑛 ∈ 𝑈 𝑉𝑖𝑛 , 𝜌𝑔
𝑜𝑢𝑡 ∈ 𝑈 𝑉𝑜𝑢𝑡 , ∀𝑔 ∈ 𝐺, ∀𝒙 ∈ 𝑉𝑖𝑛
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Machine learning design for wireless communication

wireless domain knowledge → inductive bias in machine learning design

Wireless Domain Expertise

Machine Learning

Benefits:
Modeling flexibility, 
computational efficiency

Challenges:
out-of-domain generalization, 
interpretability

Benefits:
out-of-domain generalization, 
interpretability 

Challenges:
complex modeling, processing  
complexity

Complementary advantages

Positioning, SLAM
Channel modeling Communication design 

𝑪𝑺𝑰

N
N p

𝑝1 𝑝2 𝑝3𝒑𝟎

𝝉𝒊 =
| 𝒑 − 𝒑𝒊|

𝒄
,

𝜽𝒊 = 𝐚𝐭𝐚𝐧
𝒚𝒊 − 𝒚

𝒙𝒊 − 𝒙

𝜽, ො𝝉

VA locations

Forward pass →
Backward pass
←

UE 
location
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Neural Augmentation of Kalman 
Filter with Hypernetwork for 
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Channel Tracking

• The communication channel between the receiver and the transmitter keeps evolving with time

• The underlying stochastic process is a complex function of a lot of external factors such as environmental obstructions, 
reflections, and the relative velocity and alignment between the transmitter and the receiver

• At regular intervals, pilot symbols are transmitted resulting in periodic noisy observations (𝑜𝑡) of the ground truth channel

• The aim is to estimate and track channel (ℎ𝑡) at all the time steps 𝑡

• Analytical channel tracking models fail to capture complex dynamic scenarios accurately

A discrete time stochastic process

Fig: Channel evolution
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AR-2 Kalman filter based Channel Tracking

• Optimal Kalman filter parameters vary with Doppler values

• A single Kalman filter should not be used for all the Doppler values

• The aim is to track channels following multiple different dynamics

• Channel profile: CDL-B

Transition Matrix 𝑭1 (Magnitude) 
Doppler 1850Hz

Transition Matrix 𝑭2 (Magnitude) 
Doppler 1850Hz

Transition Matrix 𝑭1 (Magnitude) 
Doppler 15 Hz

Transition Matrix 𝑭2 (Magnitude) 
Doppler 15 Hz

ℎ𝑡 = 𝑭𝑡
1ℎ𝑡−1 + 𝑭𝑡

2ℎ𝑡−2 + 𝑤𝑡

𝑜𝑡 = 𝑯𝑡ℎ𝑡 + 𝑣𝑡

A. H. El Husseini, E. P. Simon and L. Ros, "Optimization of the second order autoregressive model AR(2) for Rayleigh-Jakes flat fading channel estimation with Kalman filter," 2017 22nd International Conference on Digital 
Signal Processing (DSP), 2017, pp. 1-5, doi: 10.1109/ICDSP.2017.8096103
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NN Baseline

LSTM based channel tracking

• What can a standalone NN achieve?

• Single layer LSTM used as RNN

• Hidden state size  = 2 × 𝑛𝑢𝑚. 𝑡𝑎𝑝𝑠 𝑡𝑟𝑎𝑐𝑘𝑒𝑑

• Synthetic observations to counter sporadically 
available inputs (pilots)

• We use real + imaginary representation of 
complex numbers for PyTorch

• Loss function: σ𝑡=1
𝑇=1500 MSE ℎ𝑡, ෨ℎ𝑡 + MSE(𝑜𝑡, 𝑜𝑡)

LSTM based channel tracking

Sporadic observations (pilots)
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Hypernetwork based Kalman filter (HKF)
LSTM as Hypernetwork, at every step the LSTM updates the KF with the optimal set of parameters

▪ 𝑭𝑡
1, 𝑭𝑡

2: Transition matrix
▪ 𝐐t: Process noise covariance,  𝑤𝑡~ 𝒩 0, 𝑸𝑡

▪ 𝑯𝑡: Observation matrix (Identity in our case)
▪ 𝑹𝑡: Observation noise covariance (SNR),  𝑣𝑡~𝒩(0, 𝑹𝑡)

Autoregressive-2 KF (AR-2)

h𝑡 = 𝑭𝑡
1ℎ𝑡−1 + 𝑭𝑡

2ℎ𝑡−2 + 𝑤𝑡

𝑜𝑡 = 𝑯𝑡ℎ𝑡 + 𝑣𝑡

KF Parameter evolution:

• 𝑧𝑡 = RNN(𝑧𝑡−1, 𝑜𝑡)
• Δ𝜃𝑡+1 = MLP(𝑧𝑡)
• 𝜃𝑡+1 = 𝜃 + Δ𝜃𝑡+1

Time varying Kalman filter parameters

Here, we don’t need to model observation dynamics parameters 
as it is same for every Doppler scenario.

▪ 𝑯𝑡 = 𝕀 (Identity for our case)
▪ 𝑹𝑡 = 𝜎𝑆𝑁𝑅

2 ⋅ 𝕀 (determined by SNR and is provided externally)

Similar works: KalmanNet https://arxiv.org/abs/2107.10043, Deep State Space Model, NeurIPS 2018

https://arxiv.org/abs/2107.10043
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Hypernetwork based Kalman filter
Residual in base Kalman filter parameters

▪ 𝑭𝑡
1, 𝑭𝑡

2 =Transition matrix
▪ 𝐐t = Process noise covariance

▪ 𝑯𝑡 =Observation matrix (Identity in our case)
▪ 𝑹𝑡 = Observation noise covariance

𝑤𝑡~ 𝒩 0, 𝑸𝑡

𝑣𝑡~𝒩(0, 𝑹𝑡)

Autoregressive-2 KF (AR-2)

h𝑡 = 𝑭𝑡
1ℎ𝑡−1 + 𝑭𝑡

2ℎ𝑡−2 + 𝑤𝑡

𝑜𝑡 = 𝑯𝑡ℎ𝑡 + 𝑣𝑡

• 𝜃 = {𝑭1, 𝑭2, 𝑸}
• 𝑭1 = 𝕀 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦
• 𝑭2= 0 𝑍𝑒𝑟𝑜
• 𝑸 = Analytic Kalman 𝑸

• Δ𝜃𝑡+1 = {Δ𝑭𝑡+1
1 , Δ𝑭𝑡+1

2 , Δ𝑸𝑡+1}

• 𝑭𝑡
1 = 𝑭1 + Δ𝑭𝑡

1

• 𝑭𝑡
2 = 𝑭2 + Δ𝑭𝑡

2

• 𝑸𝑡 = 𝑸 + Δ𝑸𝑡

Residual in Kalman parameters

Learnable parameters

Stationary/Externally 
provided parameters
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Hypernetwork based Kalman filter
What happens in case of missing observation?

▪ 𝑭𝑡
1, 𝑭𝑡

2 = Transition matrix 
▪ 𝐐t = Process noise covariance
▪ 𝑯𝑡 = 𝕀 = Observation matrix (Identity in our case)
▪ 𝑹𝑡 = 𝑅 = 𝜎𝑆𝑁𝑅

2 ⋅ 𝕀 = Observation noise covariance

𝑤𝑡~ 𝒩 0, 𝑸𝑡

𝑣𝑡~𝒩(0, 𝑹𝑡)

Autoregressive-2 KF (AR-2)

h𝑡 = 𝑭𝑡
1ℎ𝑡−1 + 𝑭𝑡

2ℎ𝑡−2 + 𝑤𝑡

𝑜𝑡 = 𝑯𝑡ℎ𝑡 + 𝑣𝑡

In case we don’t have observations, we can sample its value:

• ො𝑜𝑡+1 ~ 𝒩 ℎ𝑡+1 , 𝑹 [Reparameterization trick*]

• ො𝑜𝑡+1 = ℎ𝑡+1 + 𝜖 ⊙ 𝑹
𝑑𝑖𝑎𝑔

1

2 ,   𝜖~𝒩(0, 𝕀)

Training Loss = 

𝑚=1

𝑀



𝑡

𝑇=1500

MSE ℎ𝑡 , ℎ𝑡(𝜓)

Reparameterization trick in case of missing observations

* Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 (2013).
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Simulation parameters

• Channel profile: CDL-B, SISO setup

• Delay spread: 100 ns

• FFT size (number of subcarriers): 4096

• Modulation: QPSK

• Subcarrier spacing: 30 kHz

• Carrier frequency: 4 GHz

• SNR = 10 dB

• Pilot ratio = 1: 6

• Each channel is 1500 OFDM symbols long, i.e., 1500 timesteps in each sequence

• We are tracking 64 channel taps (time domain channel tracking) and report NMSE: 𝔼
ℎ𝑡−ℎ𝑡 2

2

ℎ𝑡 2
2
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Experimental setup

Doppler bins Doppler values in the bin (Hz) corresponding velocities in km/hr

Bin 0 (0 – 70 Hz) 0, 30, 60 0, 8, 16

Bin 1 (70 - 150 Hz) 70, 100, 130 18, 27, 35

Bin 2 (150 – 300 Hz) 150, 210, 270 40.5, 56.6, 72.8

Bin 3 (300 - 500 Hz) 300, 400, 500 81, 108, 135

Bin 4 ( 500 – 1850) 800, 1300, 1850 215.8, 350.7, 499

• We have five separate bins with each bin having three Doppler values

• Each Doppler value has 800 training channel instances, and 200 validation/test channel instances

• Below we mention the 15 Doppler values (and their corresponding velocities) classified into respective bins

Configuration and Dataset
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Results

▪ Global: One model trained over entire range of Doppler values

▪ Binned KF: KF params computed over Doppler values in the bin

▪ Genie KF: Analytically computed Kalman parameters per Doppler

▪ LSTM: Vanilla LSTM baseline trained over entire range of Dopplers

▪ HKF: Hypernetwork Kalman filter trained over entire range of Dopplers

• Bin 0 (0-70 Hz): 0, 30, 60 Hz

• Bin 1 (70-150 Hz):  70, 100, 130 Hz

• Bin 2 (150-300 Hz): 150, 210, 270 Hz

• Bin 3 (300-500 Hz): 300, 400, 500 Hz

• Bin 4 (500-1850 Hz): 800, 1300, 1850 Hz

Doppler GKF BKF LSTM HKF HKF-2

0 Hz -48.89 -31.78 -18.05 -29.99 -31.86

30 Hz -32.60 -32.60 -22.16 -30.59 -30.62

60 Hz -31.40 -28.47 -26.77 -30.76 -30.92

70 Hz -30.64 -28.84 -26.63 -30.75 -30.95

100 Hz -27.71 -30.06 -29.15 -30.80 -31.04

130 Hz -28.89 -26.96 -29.23 -30.82 -31.22

150 Hz -29.64 -29.91 -29.30 -30.65 -31.04

210 Hz -31.76 -30.76 -29.19 -30.62 -30.80

270 Hz -30.66 -28.61 -29.12 -30.33 -30.44

300 Hz -29.68 -30.18 -29.27 -30.20 -30.22

400 Hz -30.24 -29.98 -28.15 -29.48 -29.38

500 Hz -29.55 -28.85 -27.90 -28.72 -28.63

800 Hz -26.70 -18.75 -25.59 -26.47 -26.55

1300 Hz -21.65 -17.59 -22.01 -22.85 -23.24

1850 Hz -16.86 -15.25 -18.29 -19.18 -19.67
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Results
Evaluation on untrained Pilot ratios (Pilot ratio: 1: 3, Pilot ratio: 1: 6) 

Test SNR: 10 dB

• Bin 0 (0-70 Hz): 0, 30, 60 Hz

• Bin 1 (70-150 Hz):  70, 100, 130 Hz

• Bin 2 (150-300 Hz): 150, 210, 270 Hz

• Bin 3 (300-500 Hz): 300, 400, 500 Hz

• Bin 4 (500-1850 Hz): 800, 1300, 1850 Hz

▪ Global: One model trained over entire range of Doppler values

▪ Binned KF: KF params computed over Doppler values in the bin

▪ Genie KF: Analytically computed Kalman parameters per Doppler

▪ LSTM: Vanilla LSTM baseline trained over entire range of Dopplers

▪ HKF: Hypernetwork Kalman filter
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Conclusion

• The proposed Hypernetwork-KF (HKF) combines the robustness of Kalman filter (KF) 
with the expressive power of neural networks (NN)

• A single Hypernetwork-KF (HKF) can track channels following multiple different 
dynamics

• Solely LSTM based baseline shows poor generalization when tested on settings 
different from the training data

• Through extensive experiments, we showed that our hybrid HKF outperforms the 
standalone KF or NN based methods

• Interpretability and out-of-domain generalization with Neural augmentation



Tribhuvanesh Orekondy, Arash Behboodi, Joseph Soriaga

ICC 2022

https://arxiv.org/abs/2203.08588

Amsterdam 07/12/2021

MIMO-GAN: Generative MIMO 
Channel Modeling

https://arxiv.org/abs/2203.08588
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𝒉

Environment, 
Antenna,
UE/gNB 
location,
Doppler, 

Carrier freq, …

Channel Modelling

• Channel Modelling

o Model physical propagation effects on wireless signals

• Existing Channel Models

o Standard Channel Models: 3GPP TDL/CDL, WINNER, …

o Ray Tracing

• Building a (classical) channel model is challenging

᠆ Domain expertise

᠆ Cumbersome field measurements

᠆ Hard-coded assumptions

᠆ Limited scenarios, Slow to prototype

• Our goal: Data-driven neural channel models

+ Accurately match field data distribution 𝑓𝜃 𝒉

Environment, 
Antenna,
UE/gNB 
location,
Doppler, 

Carrier freq, …

Neural Channel Modelling (Our focus)

Neural Channel Modelling

Channel
𝒉

Classical
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Problem Statement

Transmitter
Channel 

𝒉(𝑥) Receiver
bits bits

Given I/O measurements:

𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑁

Learn parameters of channel model:
𝑦 = ℎ𝜃(𝑥)

Channel

ℎ𝜃(𝑥|𝑧)

𝒙 𝒚

𝒛
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Related Work

[1] Dörner et al. "WGAN-based Autoencoder Training Over-the-air." SPAWC 2020

[2]  O’Shea ,et al. . "Approximating the void: Learning stochastic channel models from observation with variational 
generative adversarial networks." ICNC 2019

Transmitter Receiver
bits bits

Channel

ℎ𝜃(𝑥|𝑧)

Simple Channels (e.g., AWGN)

Input/Output symbols

SISO

Explicitly models 𝑝 𝑦 𝑥
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MIMO-GAN: Approach

G
𝑒𝑚𝑏𝑒𝑑

Channel

D real/fake

𝑒𝑚𝑏𝑒𝑑

max
𝐺

min
𝐷

𝔼ෝy∼𝑝𝐺
𝐷(ොy, ොy𝐻 ොy) − 𝔼y∼𝑝𝑑𝑎𝑡𝑎

𝐷 y, y𝐻y + 𝜆𝔼y∼𝑝ෝ𝑦
∇y𝐷(y, y𝐻 y)

2

Training objective: WGAN-GP

ොy = x ∗ 𝐺(z) y = 𝜖y + 1 − 𝜖 ෝy,
𝜖 ∼ Unif[0, 1]
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Evaluation: Setting

• Channel

o TDL-A and TDL-B

o 4⨉4 channels

o Delay spread: 300 ns

• Dataset

o Transmit signals 𝒙 = Digital impulse

o 60k input-output measurements
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Evaluation: Power and Delay Profile

-18 dB MAE
3.57 ns MAE
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Evaluation: Condition vs. Unconditional Generation

• Q: Do we need to condition networks on spatial co-ordinates?

G
𝑒𝑚𝑏𝑒𝑑

D real/fake

𝑒𝑚𝑏𝑒𝑑
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Evaluation: Spatial Correlation

• “GM”

o Condition discriminator additionally on receive 

gram matrices: 𝐷(𝑦, 𝑦𝐻𝑦)

• “SQ”

o Sequential impulses across transmit antennas

(TDL-A) MAE: 0.059𝑅𝑇𝑋 = 𝔼[𝐻𝐻𝐻]

(TDL-A) MAE: 0.057𝑅𝑅𝑋 = 𝔼[𝐻𝐻𝐻]

𝑀𝐴𝐸(𝑅⋅
𝑔𝑡, 𝑅⋅

𝑚𝑖𝑚𝑜−𝑔𝑎𝑛)
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Conclusion: MIMO-GAN

• Learning complex distributions that are easy to sample from

• Model adaptation: it can be adapted to variable number of antenna

• Learning distribution: domain specific crafted features for discriminator networks 

o Challenge: evaluating generative models



Shreya Kadambi, Arash Behboodi, Joseph Soriaga, Max 
Welling, Roohollah Amiri, Srinivas Yerramalli, Taesang Yoo
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https://arxiv.org/abs/2203.08264

March 2022

Neural RF SLAM
Indoor unsupervised positioning and 
mapping of CSI

https://arxiv.org/abs/2203.08264
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Positioning and Mapping problem

We have one (or multiple) anchors (APs, gNBs)

• Goal 1: find the location of user

• Goal 2: find the map of environment (reflectors, etc.)

Classical solutions: 

• Triangulation/trilateration: 

• knowing anchor locations, find UE location based on mutual distance/angle measurement

• Common features: angle of arrival (AoA), time of flight (ToF), time difference of arrival (TDoA)

• Fingerprinting:

• Data driven solution: field data of (feature, location) + train an ML algorithm (kNN, neural networks, etc.)

Source sample text

Real Tx at 𝐩𝟎 = (x0, y0) Real Tx at 𝒑𝟏 = (x1, y1)

UE at 𝐩 = (x, y)
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Unsupervised approach

• Idea 1: if you have enough multi-path components 
(reflection, scatterers), we can localize even with a single 
anchor

• Idea 2: with enough unlabeled CSI samples, we can learn 
the geometry of the environment without labels (location 
information)

• Assumption: We have access to many unlabeled user traces 
(CSI Hu,k, ToF 𝜏𝑘 𝑢, TDOA Δ𝜏𝑘 𝑢, AoA 𝜙𝑖 , 𝜃𝑖 𝑢)

Real Tx at 𝐩𝟎 = (x0, y0) Virtual Tx at 𝐩𝟏 = (x1, y1)

Reflector

e.g., a wall

Line of 
sight

Reflection 
from the wall

Rx measures aggregate 
CSI from all paths 
originating from Real Tx

Reflected path is 
also equivalent to 
a direct path from 
mirror image 
(Virtual Tx)

Physics of reflections

UE at 𝐩 = (x, y)

CSI
Super-resolution ToFs: 𝝉𝟎, 𝝉𝟏, …

AoAs: 𝜽𝟎, 𝜽𝟏, …

𝝉𝟎, 𝜽𝟎

𝝉𝟏, 𝜽𝟏
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Unsupervised approach

• Reflectors can be modelled using a single virtual anchor 
obtained by reflection of the main anchor*

• ToF/AoA can be obtained as

TOF: 𝜏1 =
𝒑−𝒑1

𝑐
, AoA: 𝜃1 = arctan

𝑥−𝑥1

(𝑦−𝑦1)

Notation:

• 𝑝0: anchor location

• 𝑝𝑖: virtual anchor location

• 𝑝𝑢: location of the user 𝑢 for 𝑢 ∈ 𝒰

• 𝜏𝑖,𝑢: time of flight for path 𝑖 of user 𝑢

Problem: find 𝑝𝑢’s and 𝑝𝑖’s from 𝜏𝑖,𝑢, 𝑖 ∈ 𝐼

Real Tx at 𝐩𝟎 = (x0, y0) Virtual Tx at 𝐩𝟏 = (x1, y1)

Reflector

e.g., a wall

Line of 
sight

Reflection 
from the wall

Rx measures aggregate 
CSI from all paths 
originating from Real Tx

Reflected path is 
also equivalent to 
a direct path from 
mirror image 
(Virtual Tx)

Physics of reflections

UE at 𝐩 = (x, y)

CSI
Super-resolution ToFs: 𝝉𝟎, 𝝉𝟏, …

AoAs: 𝜽𝟎, 𝜽𝟏, …

𝝉𝟎, 𝜽𝟎

𝝉𝟏, 𝜽𝟏

*similar VA based modeling can be done for other effects
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Neural RF SLAM architecture

• For a proper choice of loss function ℓ . , solve:

min 

𝑢∈𝒰

ℓ 𝜏𝑖,𝑢, 𝑖 ∈ 𝐼𝑢 ,
𝑝𝑢 − 𝑝𝑖

𝑐
, 𝑖 ∈ {0, … , 𝑁𝑉𝐴

• Parameterize the environment using 𝑝𝑖 with 𝑝0 being the 
anchor and 𝑝𝑖 ’s being virtual anchors (𝑖 ≠ 0)

• Replace 𝑝𝑢 by  a neural network 𝑔𝕎(𝐻𝑢):

𝑯𝒖

N
N p

𝑝1 𝑝2 𝑝3𝒑𝟎

AoA and ToF
model

𝜽, ො𝝉

VA locations (learnable)
Forward pass →
Backward pass ←

UE location

Input 
feature

Currently the model is trained in an unsupervised way

arg min
𝕎,𝑝1,…,𝑝𝑁𝑉𝐴



𝑢∈𝒰

ℓ( 𝜏𝑖,𝑢, 𝑖 ∈ 𝐼𝑢 ,
𝑔𝕎(𝐻𝑢) − 𝑝𝑖

𝑐
, 𝑖 ∈ {0, … , 𝑁𝑉𝐴 )

ℓ . : should be a set prediction loss (Chamfer, Hungarian, etc.)
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Association problem

• With only ToFs, we have to first associate 
each delay 𝜏𝑖 with a virtual anchor 𝑉𝐴𝑘

• We treat it as a set prediction problem

• 𝑔𝕎(. ) should act on the set of ToFs
(permutation invariant)

• The loss function ℓ(. ) should act on two sets
• Explored Chamfer, Hausdorff and Hungarian set loss 

• We use Hungarian algorithm to match two 
sets first

Thought experiment let’s assume we know virtual anchor locations
A user with unknown location receives the signal with the delays 𝜏0 ≤
𝜏1 ≤ 𝜏2

𝜏0: the smallest ToF corresponds to the main anchor 
How do we associate 𝜏1 and 𝜏2 to 𝑉𝐴1 and 𝑉𝐴2

Main anchor

𝑉𝐴1

𝑉𝐴2
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Isometric ambiguities

Real anchor

Training 
area

True virtual anchor

Real anchor

True virtual anchor

• ToF profiles and CSI are invariant to isometric 
transformation (rotation, translation and 
reflection)

Post-training correction:

• Detach and fix the localization network

• Remove the ambiguity with few reference points

• Linear map (2 × 2 or 3 × 3) can be used to 

correct the mapping part

𝑝𝑢
𝑐linear

N
N 𝑝𝑢𝐻𝑘,𝑢

NOTE: Same correction is applied to ToF/TDoA SLAM as well 
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2D Dataset

Propagation effect:                                                               

- Single bounce reflection, internally implemented ray-tracer

- Path i: (𝑎𝑖 ,𝜏𝑖 , 𝜃𝑖) – the path is determined from the propagation environment

Models:

Supervised Localization, Supervised Mapping, Neural SLAM (MLP, DeepSet, ConvNet)

Modalities:

Time Difference of Arrival  - TDoA - Δ𝜏𝑢,𝑖 , Channel State Information - 𝐻𝑢,𝑘

Source ample text

Parameter 2D

Carrier frequency 2GHz

Bandwidth 400Mhz

Test area 5mx5m

Num of subcarriers 128

Number of walls 4

WiAI 2D dataset

Real anchor

Training 
area

True virtual anchor

Room walls

True environment Learned environment Final map
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Experiments for 2D SLAM

2D Dataset for bandwidth of 400Mhz

log norm(CSI) point cloud per tone 

left: GT  right: converged model

Localization error Genie TDoAs (m) MUSIC TDoAs (m)

Average 0.01 0.154

Median 0.01 0.133

90 quantile 0.023 0.26

Room layout and placement of VA: 

Predicted  virtual anchors  in blue,  

True virtual anchors in green, 

Training area marked in red box,  

Room dimensions marked as blue box,  

TX/Anchor location in red

• Features extracted using MUSIC algorithm and overparametrized VA 
numbers

• End-to-end fully unsupervised SLAM
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Experiments on 3D data

Propagation offect:                                                               

- Double bounce reflection

RemCom dataset: 

- 3D raytracing simulator

- Supports non smooth walls and diffraction and diffused scattering models 

- Multiple reflection bounces up to orders of 6, multiple rooms and floors

Modalities: 

- Time of Flight – ToF = 𝜏𝑢,𝑖 , TDoA - Δ𝜏𝑢,𝑖 , Channel State Information - 𝐻𝑢,𝑘

Source ample text

Parameter 3D

Carrier frequency 3.5Ghz

Bandwidth 100Mhz

Test area 30mx20mx4m

Num of subcarriers 128

Number of walls 6 -7

REMCOM 3D dataset
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Experiments on 3D SLAM: Neural SLAM on single bounce

• With 100 MHz BW, not all ToFs can be recovered from CSI values, which causes performance 
degradation in  Neural SLAM.

• With larger environments, it is more challenging to train a model for the whole room → it is easier 
to focus on smaller area for neural SLAM

Localization error Median 90% quantile 

3D Neural genie ToF SLAM 3.4 cm 7 cm

3D  Neural MUSIC ToF SLAM 43.4 cm 1.2m
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Conclusion: Neural RF SLAM

• Incorporate physics of propagation in the model (decoder part)

• Unsupervised learning: unlabeled CSI samples 

• Model adaptation: variable size inputs with permutation invariant functions using DeepSets



“WiCluster”, Ilia Karmanov, Farhad G. Zanjani, Simone Merlin, Ishaque Kadampot, 
Daniel Dijkman, Globecom 2021 https://arxiv.org/pdf/2107.01002

“Modality-Agnostic Topology Aware Localization”, Farhad Ghazvinian Zanjani · Ilia 
Karmanov · Hanno Ackermann · Daniel Dijkman · Simone Merlin · Max Welling · 
Fatih Porikli, NeurIPS 2021 https://openreview.net/forum?id=3v6n7458GAq

WiCluster: Passive Indoor 
WiFi Positioning without 
Precise Labels

https://arxiv.org/pdf/2107.01002
https://openreview.net/forum?id=3v6n7458GAq
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Passive positioning

Environment No. 2 – 2D Office, 
15m x 21m

Environment No. 1 – 2D Office, 
14m x 20m

Environment No. 3 – 3D Home



44Source sample text



Final points
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Machine learning design for wireless communication
• Unsupervised learning: 

o Learning distributions and manifolds is an approach to obtain features in an unsupervised way

o Examples: WiClustering, Neural RF SLAM

o Other perspectives: self-supervised learning, transfer learning

• Adaptive models:

o Models should be able to adapt to different channel conditions and setups 

o Examples: Hypernetwork Kalman, MIMO GAN

• Generalization

o Designing ML models based on inductive bias, gained from domain knowledge, or neural 

augmentation can help generalization

o Example: Hypernetwork Kalman, MIMO-GAN

• Interpretability

o Neural augmentation helps interpretability of modules in an ML model

o Examples: Hypernetwork Kalman, MIMO-GAN
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Variable input dimension using Deep Sets

• ToF, TDoA and AoA are some of the modalities contained  in CSI that are correlated to the UE 
position. 

• Problem: variable sized 𝜏𝑖 𝑢, Δ𝜏𝑖 𝑢 , 𝜙𝑖 , 𝜃𝑖 𝑢(limited resolution and unresolvable paths)

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola, “Deep Sets,” Advances in Neural Information 

Processing Systems, vol. 30, 2017
𝑔

𝑤 𝑝𝑢

𝑝1 … 𝑝𝐾𝒑𝟎

𝑓. . ො𝝉

Physical model 

𝛷

+

Functions on sets has a representation of the form መ𝑓 𝜏 = 𝜌(σ𝜏 𝜙 𝜏 )
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Deep Sets

• It is also possible to build permutation equivariant model

• The proof is based on defining a bijection from 2𝒳 to ℝ using σ𝑥∈𝒳 4−𝑐(𝑥) with c 𝑥 is an 
enumeration of elements of 𝒳

• A similar result is presented for fixed size subsets of an uncountable set 𝒳

• Example of embedding: 𝜑 𝜏𝑖 = 𝑒−𝑗2𝜋𝑓𝑐𝜏𝑖𝑒
−𝑗

2𝜋𝑘

𝑁𝑇𝑠
𝜏𝑖 → 𝐻𝑘,𝑚 = σ𝑖=1

𝐿 𝑒−𝑗2𝜋𝑓𝑐𝜏𝑖𝑒
−𝑗

2𝜋𝑘

𝑁𝑇𝑠
𝜏𝑖 - CSI embedding 

as 𝜑 and as a CNN as 𝜌

Theorem [1]: Assuming  countable set 𝒳,  a function 𝑓: 2𝒳 → ℝ is a

valid set function, i.e., invariant to the permutation of elements in 𝑋, if and only if it can be 

decomposed in the form 𝜌(σ𝑥∈𝑋 𝜑(𝑥)), for suitable transformations 𝜌 and 𝜑.

[1] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola, “Deep Sets,” Advances in Neural 

Information Processing Systems, vol. 30, 2017


